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W-e explore here the acceleration of convergence af iteratilre methods for the solution 
of a class of quasilinear and linear algebraic equations. The specific systems are the 
fimte difference form of the Navier-Stokes equations and the energy equation for 
recirculating flows. The acceleration proced-ures considered are: the srccessii,e over 
relaxation scheme; several implicit metbods; and a second-order procedure. .% new 
implicit metbod-the alternating direction line iterative method-is proposed in this 
paper. The method combines the advantages of the lme successive over reIaxation ano 
alternating direction implicit methods. The various methods are tested for their come 
putational economy and accnracy on a typical recircmatmg flow C&ration. 

The numerical experiments show that the alternating direction line he:arive method 
is the most economical method of solving the NavierrStokes eqiuations for ah Rey-noIds 
mnmbers m the laminar regime. The usual ADT methcd is shown to be nor so attmct%e 
for large Reynolds nnmbers because of the Ioss of diagonal dormnance. This loss can 
however be restored by a s&able choice of the relaxation parameter, but ai the cost 
of accuracy. The accuracy of the new procedure is comparable to tbar of the we% 
tested successive overrelaxation method and to the availabie resuits in the hterature. 

The second-order procedure turns CLIP to be the most e?icient method for th.e SO~LII~O~ 

of the hnear energy equation. 

Numerical solutions to the Waiver-Stokes and energy equations are veryy popular 
for predicting the flow and heat transfer in separated regions. The development .of 
these solutions invoives the construction of a suitable Emte difference analogue 
that exhibits satisfactory convergence and stability properties The ?.t~wind” 
diiference scheme has now been accepted as an efhcient procedure for constructing 
so!utions to recirculating flow problems [l-4]. The second step in the process ?he 
solution of the algebraic equations generated by the ditferencing procedure: 2 
usually accomphshed by some form of relaxation method. One of the severe 
handicaps m the application of these methods for the study of complex engineermg 
systems with a large number of parameters, is the enormous demands of computa- 
tional effort. In this paper, we concentrate on this aspect of the problem and seek 
methods that will provide fast and accurate solutions to the algebraic equations. 
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430 NALLASAMY AND PRASAD 

The finite-differencing procedure of elliptic partial differential equations (the 
equations we consider in this paper belong to this general class) yields a large, 
sparse matrix system. These systems are usually solved by iterative methods. Many 
acceleration procedures are in vogue to reduce the computational effort involved 
in these procedures. For linear equations, a considerable body of theoretical 
results has been developed to predict the behavior of the different procedures [5]. 
No such results are available for the quasilinear coupled system of equations that 
are of interest in this work. Under these conditions, it appears expedient to take 
recourse to an experimental study of the behavior of various methods. The primary 
objective of the present work is to apply various acceleration procedures to a 
typical recirculating flow situation and arrive at ad hoc conclusions about the 
relative effectiveness of the different procedures, in handling this class of problems. 
The energy equation, though single and linear, faces similar problems of slow 
convergence in separated regions. Hence, the acceleration procedures for this 
equation have also been studied. 

The cavity problem has been chosen as the model problem for detailed study 
in this work. Plenty of experimental as well as computational results are available 
for this geometry and as such will provide adequate comparisons for the work 
reported in this paper. 

THE CAVITY PROBLEM 

The problem of steady, plane, laminar flow of an incompressible constant 
property Newtonian fluid in a square cavity, similar to the one considered by 
Greenspan [2], is considered in this paper. The flow inside the cavity is induced by 

FIG. 1. Geometry and coordinates. 



the steady motion of one of the walls in its own plane3 wAhile the other three are 
stationaryS The moving wall is kept at a temperature higher than that of the other 
three wahs which are at a uniform temperatures Figure 1 shows the geometry and 
coordmate system employed in the study. 

The equations governing the flow inside the square cavity are: 

The boundary conditions to be satisfied are: 

The energy equation for steady, viscous, constant property fluid is 

The boundary conditions are: 

7-(x, 1) = I, 

T-(0, y) = T(x, 0) = 7-(lv yj = o- 

1x1 the above equations, +, CO, and T are the dimensionless stream, vorticity and 
temperature functions respectively; Re is the Reynolds number; I+ is the Prandtf 
number of the fluid; u and v are the velocity components in x and JG directions. 

THE FINITE DIFFERENCE EQUATIONS 

The governing differential equations are replaced by difference equations usmg 
the upwind differencing procedure [2]. These equations for any point (i?j) m the 
field corresponding to Eqs. (l), (2) and (4) are: 
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Ti-l,j + T~1.f + Ti,+1 + G*~+I - 4Ti.j 

= y [Tc+(~ - I 0 1) - Ti+l,j(V + I ZJ I) 

- Ti,+lCu + I ZA II + T~,~+~C~~ - I so II + 2Td u I + I V I)13 (81 

lz in the above equations is the size of the square mesh used to replace the flow 
field. 

The next step is to replace the boundary conditions by their corresponding 
difference forms. The stream function presents no problem and the first set of 
conditions shown in Eq. (3) can be used directly. The boundary condition for 
vorticity or its derivative along the walls is not specified a priori, but is to be 
derived from the no-slip condition at the wall [2], that is, from the second set of 
conditions in Eq. (3). Thus, for example, on the wall x = 0, 

and 

The subscripts on $J refer to the points shown in Fig. 1. Similar equations for the 
other walls may be written. The temperature boundary condition can be used 
directly from Eq. (5). 

THE NUMERICAL PROCEDURE 

The numerical method employed to solve the set of equations represented by (6) 
and (7) is an iterative one. Since the boundary condition on the vorticity function 
is specified in terms of unknown stream function values which are away from the 
boundary, special iterative procedures are required. Greenspan [2] uses an iterative 



procedure consisting of an inner and an outer iteration. This procedure is i!hWrated 
with the aid of the thick line drawn at a distance of jr from ihe boundary ?‘see 
Fig. 1) ‘The outer iteration consists of evaluatmg: 

e vorticity function on all the walls from equations of the type (9); 
b. the stream function on the thick lme from equations of the type (1.0). 

The inner iteration involves the evaluation oft 

a. the vorticity function at all points inside the boundary from Eq. (7); 
b. the stream function at all points inside the region bounded by the thick hre7 

using Eq. (6). 

For each outer iteration, Greenspan carries out the inner iteration to convergenze. 
Instead a direct iteration procedure involving one inner iteration to every outer 
iteration reduces considerably the computational time according to Friedman l6J 
We use the direct iteration procedure in ah our investigations. The convergence 
criterion is defined in this work by 

wherefrefers to the function evaluated, tz the iteration count3 and E an arbitrary 
small number. 

ACCELERATION PROCEDURES 

Direct iterative procedures of the Gauss-Seidel type are normally shah in 
convergence. Many acceleration techniques have been devised from time to 
time to improve the rate of convergence of iterative methods A few of them are 
discussed below. 

Successive over Relaxatioiz Method (SORj 

This is a point-by-point iterative scheme, similar to the Gauss-Seidel scheme3 but 
with a relaxation factor “r” to find the new value at a point m the field. The proce- 
dure for the evaluation of a function ‘:f” iteratively is defined by 

.f fa+ljY in the above, is the value found explicitly from known values at the neigh- 
boring points at the (z-z + l)th iteration andfCRL1) is the updated value. The rate of 



434 NALLASAMY AND PRASAD 

convergence of the procedure is a strong function of “r” and for linear equations, 
an optimum value of “r”, which provides convergence rates that are faster by an 
order of magnitude than the Gauss-Seidel scheme (r = l.O), is shown to exist. 
Further, simple linear equations are amenable to exact analytical treatment to 
derive the optimum relaxation parameters [5]. No such results are available to 
determine the optimum relaxation parameter for the type of equations considered 
in this paper. Thus, one is forced to rely upon a scanning procedure, that is, to vary 
r over a range, and select that value of r which provides the fewest number of 
iterations. The procedure is carried out for the present set of equations with 
Re = 1000, Pr = 1.0, lz = 0.05 and E = 0.0001. 

The scanning is accomplished in two stages. At first the relaxation parameter 
for vorticity is kept constant at a value of unity and only the value of r for stream 
function is varied. The result of this investigation is shown in Fig. 2 as a plot of 
convergence rate versus the relaxation parameter. From this figure, it is seen that 
the optimum relaxation parameter is 1.6. For r* > 1.6, the number of iterations 
required for convergence tends to increase, and around rb = 1.9, the method 
diverges. 

FE. 2. Convergence rate-stream function. 

Next, the relaxation parameter for stream function is kept constant at 1.6 and it 
is varied for the vorticity function. The result of this investigation is plotted in 
Fig. 3. The optimum relaxation parameter for vorticity is obtained as 1.1 from the 
figure. The procedure diverges for rw = 1.2. 

In order to check whether the above values of the relaxation parameters are the 
only ones that produce fastest convergence, the computer programmes were run for 
several other combinations of r* and ra . These runs showed poorer convergence 
rates than those obtained with the optimum values for r,,, and rW . These values of 
optimum relaxation parameters are insensitive to initial guesses used to start the 
iteration. Dynamic variation of the relaxation parameters during the iteration 
process is also of no help for the present system of equations. Finally, these relaxa- 
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3. Convergence rate-vorticity hnction. 

tion parameters have been tested for a wide variety of geometries and problems 
[?-91 by the authors and found to work very well. 

The savings in computational effort obtained by the use of these optimum 
relaxation parameters are considerable as the following results will reveal. While 
the Gauss-Seidel method (rU = rti = 1.0) takes 366 iterations for convergence, the 
SOR method with optimum relaxation parameters (Ye, = 1~6, rU = 1-l) takes only 
115 iterations. In both cases the number of operations performed per iteration is 
almost the same. Thus, by the use of the SOR method with. optimum relaxation 
parameters, the time taken for convergence is reduced to about one-third of the 
value with the Gauss-Seidel scheme. 

.4 similar procedure is employed to establish the optimum relaxation parameter 
for the energy equation. Figure 4 shows the plot of rate of convergence agaimt the 
relaxation parameter for the energy equations The optimum relaxation parameter 
for this case is obtained as 1.1, and is the same as that of the vorticity ftmction. The 
above result suggests that the optimum relaxation parameter is goverEed by the 
form of the equation rather than the linearity or otherwise of the equation> at least 
fer the class of flows studied here~ The reduction of time achieved by the use of the 
optimum relaxation parameter with the SOR method is oAy 17 7: when cosmpared 
with the time taken by the Gauss-Seidel scheme. 

FIG. 4. Convergence rate-temperature function. 
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Inzpiicit Methods 

The cavity problem represents the simplest geometry in the class of steady, 
viscous, separated flows. Complex geometry usually results in a large system of 
algebraic equations. The increased size of the system usually results in an increase 
not only in the computational time per iteration but also in the number of iterations. 
It is natural in these circumstances to seek methods of further improving the rate 
of convergence of iterative methods. Some of these methods are implicit in nature. 

In SOR method, the value of each component is found explicitly in terms of the 
values at the neighboring points. If it is applied to a group of points instead, there 
will arise a system of equations which require simultaneous solution. Consequently 
individual components are implicitly defined in terms of the other components of 
the group. 

In the implicit methods, the updated value at each point is found as follows, 

where j=tn+l) refers to the new value of the function evaluated implicitly at the 
(~2 + 1)th iteration and ftn+n to the updated value. The relaxation parameter is 
the optimum value determined earlier. These methods are treated in detail by 
Ames [lo]. We restrict ourselves here to a brief discussion, followed by the relevant 
equations, for the different methods. The energy equation, being similar to that of 
vorticity, is not included in the following. 

Line Iterative Methods 

Only row and column iteration are considered in this paper. The corresponding 
difference equations are: 

Row Iteration: 

(14) 

(15) 

Iteration is carried out from the top of the cavity to the lower wall. 



Column Iteraticm: 

The iterations are carried out from the left to the right of the cavity. 

Ahernating Direction Inzplicit Merhod (ADI) 

This method is somewhat similar to the line iterative method carried out alter- 
nately in x and JI directions. The iterations in the x-direction are carried OS by 
treating the x-direction derivatives as unknowns, while th~c pdirection iteraxions 
beat the y-direction derivatives as unknowns [IO]. The dizerence equatiolis cur- 
responding to these two cases are: 

Y-Direction Iteration: 

X-Direction Iteration: 
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Alternating Direction Line Iteratk~e Method (ADLI) 

We propose in this paper a variation of the conventional ADI procedure. It 
consists of employing the line iterative method described above, but alternately 
in the .X and y directions. Thus a complete iteration comprises one iteration in the 
row-direction, followed by a second one in the column direction. The equations for 
the method are the same as Eqs. (14-17). We call the method “the Alternating 
Direction Line Iterative (ADLI)” method. 

Second-Order Procedure 

When an iteration procedure converges linearly, it is sometimes possible to 
accelerate the convergence by using a second order procedure, such as Aitken’s 
extrapolation technique [lo]. In this method the value of the function is obtained 
by extrapolation from three successive iterates to minimize the error. The following 
is the equation for the method, 

j-~"f~n+*~ - - 
(p+*) ~jPl+l~)z 

(j-w+*) - 2p+l) +fw) . G59 

The method is to be used along with some other scheme such as SOR and is 
effective when applied after a few initial iterates have commenced the process of 
convergence. 

RESULTS AND DISCUSSION 

Employing each of the methods described in the previous section, the equations 
of motion are integrated for the cavity problem. The acceleration procedures are 
tested against the well established SOR method. The methods are also studied for 
their utility in solving the energy equation. The comparisons are based on the 
number of iterations, time required for a specified convergence, and “operational 



counts5’ per iteration. The “operational counts” are cakulated takmg into account 
the number of multiplications and divisions per iteration. The computational times 
reported in this paper refer to times taken on an IBM NJ/44 system with an on-hne 
input-output facility. Single precision arithmetic is found to be adequate for ah th.e 
computations in this investigation. 

A second comparison is presented to estabhsh the accuracy of the res~ks 
obtained in this investigation. Theoretical error estimates are difficult to obtam 
for the class of coupled, quasilinear equations considered here* Hence, we Compaq 
our results with. the ones available k-r the literature. 

The results of these studies are discussed in this section 

We first consider the effect of the convergence criterion, E? on the accuracy of 
the sohxtion. It may be recalled that the convergence criterion defined in this =KX% 
is a relative maximum one. It is the maximum, in the field, of the ratio of change m 
the values of the function between two successive iterates to the value of ihe func~ 
tion (see Eq. (1 I)). Thus this criterion is satisfied by stream and vorticity functions 
at all pomts in the field. In general, when the vorticity function satisfies the ten- 
vergence criterion the stream function converges to an E far smaller than the one 
specified. 

Effect of Convergence Criterion on the Accuracy of ihe Solution z+Velocity 
for Re = 1000, 11 = 0.M 

- 

1.0 
0.95 
0~85 
0.75 
0.65 
0.55 
0.45 
0.35 
0.25 
0~15 
0.05 

0 

x = 0.2 x = 0~5 

Convergence Criterion Convergence Criterion 
0.005 0.001 0.005 0~001 

-1.0 -1.0 -1‘0 -1.0 
-0.49215 -0.49216 -0.52230 -0.51225 
-0.13550 -0.13550 -0.21888 -0~21893 
-0.01977 -0.07978 -0.16328 -0.16334 
-0.04425 -0.0442? -0.09336 -0.09340 
-0.01019 -0.01022 -0.01764 -0.01766 
+0,03037 -to.03035 +0,05727 +0~05?2? 
+o.o!z24 +0.09824 +0.14269 +0.14271 
+0.20051 +0.20052 +0.25323 +0.25327 
+0.26724 -to.26729 +0.33845 +0.33842 
+0.16553 +0.16550 +0.21385 +0213s9 

0 0 0 0 

x = 0~8 
- 

Cmvergence Crherkx 
0.005 fJ.001 

~- 

-1.0 -1.0 
-0.32612 -to 3?613 . ..*- 
-0.02594 -0.025% 
-0~03847 -0.03852 
-0~02858 -0.02861 
+OBO467 +0.00468 
+0.05007 j-O.05010 
+0.09623 +a09626 
+O.l2417 +O~lXIl 
+I.10336 +&1@338 
+0,03061 +o.oxm 

0 0 
-~ 
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The choice of e is governed by the accuracy desired for the physically observable 
variables and the computational effort. Table I shows the values of the velocity 
function at three sections in the cavity for two values of C, namely, 0.005 and 0.001. 
These results have been obtained by SOR method for a Reynolds number of 1000 
and a mesh size of 0.05. An examination of the table reveals that the maximum 
difference between the two sets of values occurs at x = 0.2 and y = 0.55, and is less 
than 0.3 %. The rest of the field shows differences only in the fourth or fifth signifi- 
cant figure. Thus, for this class of problems, an c = 0.005 produces results which 
are of sufficient accuracy for all practical purposes. This choice of E results in 
significant savings in computational effort for complex geometries such as in 
[7]-[9], though the savings are not of much consequence for the present geometry. 

We now turn to the comparison of various methods for solving the algebraic 
equations corresponding to the Navier-Stokes equations. These results are sum- 
marized in Table II. They have been computed for a Reynolds number of 1000 and 
a mesh size of 0.05. The Thomas algorithm [lo] for a tridiagonal matrix is used for 
solving the subsystems in all the implicit methods. The methods have been arranged 
in the order of their convergence rates. 

TABLE II 
Comparison of Iterative Methods-Navier-Stokes Equations 

Re = 1000,h = 0.05 

AD1 

r$ = 1.6 
Method rm = 0.1 

Number of SO 
Iterations 

Time 107 
(sec.) 

Operational 9020 
counts 

Gauss- 
Seidel 

LINE SOR 
SOR ADLI 

t-4 == 1.6 ru = 1.1 ~ ~ Aitken’s 
ADLI r+ = 1.6 T,J, = 1.6 extrapo- 
(G-S) Column Row rcO = 1.1 rm = 1.1 lation 

268 132 123 85 83 28 - 

96 80 77 54 37 34 - 

4200 7420 7820 7820 4GOO 7820 - 

The table does not include any results for the second order procedure-the 
Aitken’s extrapolation procedure. The procedure failed to converge for all com- 
binations of (under or over) relaxation parameters. The failure is attributed to the 
coupled nature of the governing equations. Extrapolation of one function-say, 
the stream function-to minimize the error, results in an increased error in the 
other function. Use of the procedure on one function only (in particular the stream 
function) does not assure the convergence of the system either. 



Before discussing the results in Table II, we will digress a little and discuss som.e 
interesting features observed during the present work while Cng the alternaGag 
direction implicit (ADI) method. The method is yet to be investigated tkwughky 

even for linear systems. It is known to resuh in loss of accuracy when applied to 
certain systems [ICl]. For the preseni system of equations: the A 

optimum relaxation parameters (r+ = 1.6, I-“, = i.1) converges only far small 
Reynolds numbers (say 100). &4s the Reynolds uumber is increased to 1003 the 
method fails to converge. This is attributed to the loss of diagonal dominance m 
the coefficient matrix as shown below. In the tridiagonal matrix for the col::mn 
iieration, the coeflicients have the form 

Since the off-diagonal terms involve addition of veloci~ components, the diagonal 
term loses dominance whenever the Reynolds number becomes large. However. 
this loss can be compensated by making the relaxation factor, rF small enough~ A 
similar situation prevails for row iteration as well. The following discussion will 
reveal some of the undesirable consequences of~he above factors” 

The solution obtained by the ADI method with optimum relaxatiou parameters 
agrees we11 with that of the S0R method for a Reynolds number of lO@ as can be 
observed from Table III. The table shows center line z-velocities obtained by the 

TABLE III 

Cclnparkon of AD1 and SOR Methods Center Line u-Veloci@ ?or RF = 100, !z = 5.65 

Method SOR AD1 

1.0 -1.0 
0.95 -0.66219 
0.85 -0.22962 
0.75 -0.02967 
0.65 +0.09442 
0.55 +0.17075 
0.45 +0.19677 
0.35 +0.18140 
0.25 +0.14345 
0.15 +0.09633 
0.05 +o.o3go5 

0 0.0 

-1.a 
.-O&6218 
-0.22960 
-0.0964@ 
+0.09444 
+0.17074 
+0.19674 
+x18137 
+0.14344 
+0.09633 
+0.0X305 

0.0 
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TABLE IV 

Effect of the Value of Relaxation Parameter on The Accuracy of the AD1 Method. 
Center Line u-velocity for Re = 1000, /I = 0.05 

Method SOR AD1 

r$ = 1.6 rti = 1.6 I-+ = 1.6 
Y f” a = 1.1 VW = 0.5 rw = 0.1 

1.0 -1.0 
0.95 -0.51223 
0.85 -0.21888 
0.75 -0.16328 
0.65 -0.09336 
0.55 -0.01764 
0.45 +0.05727 
0.35 +0.14269 
0.25 +0.25323 
0.15 +0.33845 
0.05 +0.21385 

0 0 

Number of 
iterations 

83 

-1.0 
-0.51234 
-0.21904 
-0.16334 
-0.09334 
-0.01756 
i-O.05736 
+O. 14278 
+0.25330 
+0.33836 
+0.21381 

0 

115 

-1.0 
-0.51203 
-0.21848 
-0.16287 
-0.09306 
-0.01753 
+0.05718 
+0.14248 
+0.25294 
+0.33790 
+0.21347 

0 

80 

two methods. An agreement upto 4 significant figures is obtained. Table IV shows 
centre-line u-velocities for a Reynolds number of 1000 and two values of rW , 0.5 
and 0.1, with the AD1 procedure. The solution obtained by SOR with optimum 
relaxation parameters is also included for comparison. It is seen that the AD1 
method, in general, agrees with the SOR result to only three significant figures. For 
rW = 0.1, the convergence is faster than that for rW = 0.5. However, the agreement 
with the SOR result is poorer for rU = 0.1, when compared with the result obtained 
with rW = 0.5. Thus the solution obtained by the AD1 method seems to depend on 
the relaxation parameter (which is to be reduced in order to obtain convergence at 
higher Reynolds numbers). This makes the method unreliable. 

Reverting to Table II, we will now consider the difference in convergence rates 
between the SOR and the line SOR methods. The line iterative methods are known 
to accelerate the convergence of linear equations [lo]. However, for the problem 
under consideration, both row and column iterations do not give convergence 
rates better than SOR. Since the operational counts per iteration are much larger 
than the SOR, these methods involve large computational times. An interesting 
by-product of the study is the difTerence between the convergence rates of the 
column and row iterations. This arises because the maximum variation of stream 
and vorticity functions occurs along the coIumn (~1) direction. During a single 
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cohmm iteration, the implicit solution adjusts the values only along one col~rns 
while the others are assumed known. This is ineffective due to the negk~t of !arge 
variations near the moving w-all, in the adjacent columns~ in the case of row 
iteration5 since the iteration is carried out in the direction of lmaximum ~ari&iori 
of the functions, it converges faster than colEma iterations 

The new method proposed in this paper, the alternating dir&ion line iterative 
[ADLI) method, is tested for two sets of relaxation parameters, namely> one XX- 
responding to the Gauss-Seidel scheme (r6 = rW = I~@) and lhe XIX: 
corresponding to optimum relaxation parameters (rti = I.65 rU = 1 .I). The former 
reduces the number of iterations ,required for convergence to near1.y half ~com~ared 
to that of the Gauss-Seidel method. The reduction in time is c&y 16 y,; d-tie ~3 
increase in operational counts. The latter procedure takes the fewest itemtios 
for convergence of all the methods investigated in the present work The number 
of iterations (= 28) reported in Table II implies 28 row jteratioas and 28 co!,umn 
iterations. The operational counts for the ADLI method is ~ea?ly double that of 
SCIR. However, the time required for convergence is less thar~ that of WI?.. Thus 
the alternating direction line iterative method with optimum relaxation parameters 
turns out to be the most economical method of solving the finite diEerence equations 
of motion, both in the number of iterations and computer time” 

In view of the above result, it was decided to investigate the .method in greater 
detail. The program was run for different Reynolds numbers and mesh sizes 2nd 
its performance was compared with that of S0 for the same p2rameter values. 
Table 1; shows the convergence rates and the time taken for the two methods with 

TABLE V 

Comparison of ADLI and SOR Methods-Computational Effort, DiRerent Mesh Skes3 X.Z = 1WN 

Perceptage saving in 
computer Time with 
ADLI 

0 8.1 18.7 -10.1 -:3.2 

-.- 

five different mesh sizes (0.1, 0.05, 0.033, 0.02s and O.O2), far a Reynolds number 
of 1000~ The same relaxation parameters (rU = 1. !., rti = 1.6) were med for ai? 
mesh sizes. As the mesh size is reduced, the savings in computer time increase with 
the use of the .4DLI procedure, the maximum saving occurring at JZ = O*EZ~ For 
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the mesh size lr = 0.025, the ADLI method exhibits a poorer convergence rate than 
the SOR procedure and this is difficult to explain on the basis of the present work. 

The solutions for different Reynolds numbers (10, 50, 100, 500, 1000, 2000 and 
5000) are obtained with a mesh size of 0.05. The number of iterations, the time 
required for convergence and percentage savings in time when compared with that 
of SOR are tabulated in Table VI. The ADLI method results in substantial savings 

TBLE VI 
Comparison of ADLI and SOR M&hods-Computationa Effort, Different Reynolds Numbers, 

11 = 0.05 

Reynolds 
number 10 50 100 500 1000 2000 5000 

Number of SOR 109 105 142 13? 83 565 - 
iterations ADLI 33 32 42 38 28 35 58 

Time SOR 49 41 63 59 31 265 - 
WI ADLI 40 38 51 46 34 43 75 

Percentage saving 
in computer Time 
with mL1 

18.3 19.1 19.0 22.0 8.1 83.8 - 

in computational time for the range of Reynolds numbers investigated- The saving 
is dramatic for higher Reynolds numbers: for Re = 2000 it takes less than one- 
sixth the time taken by SOR procedure; for Re = 5000, while the SOR fails to 
converge, the ADLI not only converges, but does so in a fairly short time. The 
behavior of SOR at high Reynolds numbers is attributed to severe oscillations that 
are encountered during computation. These results are somewhat different from 
those of Greenspan [2] who obtained solutions upto a Reynolds number of 105. 
The Greenspan work uses a modified form of SOR and involves a large number of 
parameters with attendant programming complexities. In addition, the boundary 
conditions are handled in a different way as explained earlier. The computational 
times are also very large. The ADLI method developed in the present work has not 
been tested beyond a Reynolds number of 5000 since laminar flows under such 
conditions are not physically realizable. In support of this, the experimental 
results of Pan and Acrivos [11] can be cited. According to their findings, the limit 
Re + co is attained at a value of Re = 2700 for a square cavity and further, flow 
instabilities set in at about Re = 4000 for cavities of large depths. Thus in the 
range of Reynolds numbers of practical consequence, the most efficient method 
of integrating the equations of motion for recirculating flows, is the “upwind” 
difference scheme coupled with a direct iteration technique and the ADLI proce- 
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dure. The ADLI method is successful because it combines the virtues of all the 
methods considered in this investigation with the exception of the second order- 
procedures 

Comparison of ADLI and SOR Methods--4ccuracy 
u-Velocity for Re .= 1000, h = 0.05 

1.0 -1.0 - 1.0 --t.0 -1.0 -T-cl - ~ , ,‘J ;. 

0.95 -0.49215 -0.49212 -~0.51223 -0,512X3 -0.32612 -0.326t5 
0.85 -0~t3550 -0.13548 -~O.21888 -0.21896 -0.02594 .-tj.@602 
0.75 -0.01911 -0.07975 -mO.l632S -0.16328 -0.03847 -0.0354 
0.65 -0.04425 -0.04425 -m0.09336 -0.09330 -c?.O2858 -s.pg jg 

0.55 -0.01019 -0.01021 -0.Oli64 -0.01757 +I.00467 +<,OCJ‘$7'% 

0.45 +0.03037 +~0.03036 +0.05727 +0.05?32 +o.c?5007 +o.o5ot6 
0.35 +0.09824 +0.09824 q-0.14269 +0.14271 +o.o9f523 +0.0%29 
C.25 i-0.2OM t +0.19951 +0.25323 +0.2X324 +0.124:7 4,!2421 
0~15 3-0.26724 i-0.26723 +a33845 +0~33833 +O~tO336 +O.t0338 
0.05 +0.16653 +0.16647 +0.21385 +0~21380 +0.03061 +o,o:t~6~ 

0 0 0 0 0 0 !; 
~-~ 

We next examine the ADLI method for its acctiracy- Table VII ~ho=+w the 
w-velocity components at three sections (x = 0.2,0.5 and 0”s) of the cavity obtained 
by SOR and ADLI methods for Re = 1000 and !I = 0.05. The two sets of res&~ 
agree with each other to four significant figures. 

Y 

FIG. 5. Comparison of center line u-velocity. Reynolds nunber = 100. (--J & = :!ZO 
(Burggraf); (---) lz = l/l4 (Mills); o h = l/20 (Present). 
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Finally the solution obtained in this paper is compared with those available in 
the literature. No numerical comparisons are attempted since such data are not 
easily accessible to the authors. Graphical comparisons of centre line velocities for 
a Reynolds number of 100 obtained in the present investigation with those obtained 
by Mills [12] and Burggraf [13] are presented in Fig. 5. Both these investigators 
employ the central difference scheme. Mills uses the Liebmann iteration technique 
while Burggraf uses a modified relaxation procedure. The present solution obtained 
with a mesh size of l/20 agrees very well with that of Burggraf, obtained with 
11 = l/50. The differences in the solutions between Mills and the present one are 
due to the coarse mesh (/z = l/14) used by Mills. 

Energy Equation 

The most successful procedure for solving the finite dilference equations of 
motion is shown to be the ADLI method. This, along with the SOR procedure is 
considered, in this section, for the solution of the energy equation in finite difference 
form. The latter is included for purposes of comparison. The Aitken’s extrapola- 
tion technique, which is known to yield very fast convergence for linear equations, 
is also studied. The relevant equations are similar to those of vorticity except for 
the additional parameter, Prandtl number. The results of these investigations are 
shown in Table VIII. The Prandtl number is unity, the Reynolds number is taken 

TABLE VIII 

Comparison of Iterative Methods-Energy Equation 
Re = 1000, Pr = 1.0, h = 0.05. 

Method 
SOR ADLI Aitken’s extrapolation 

ri- = 1.1 f-i- = 1.1 rr == 1.1 

Number of 
iterations 

Time 
k4 

122 54 38 

26 18 13 

as 1000, the mesh size used is l/20, and E = 0.001. The convergence criterion is 
chosen as 0.001 to maintain more or less the same accuracy as that of the stream 
function. 

From the table, it is seen that the Aitken’s extrapolation technique is the most 
efficient method for the solution of the energy equation, though it fails with the 



Naiver-Stokes equations. This success must be attributed to the fact that lye are 
solving a single linear equation in this case. The number of iterations required for 
convergence is less than one third of that of WRY while the time is half of tha: of 
SOR. 

The alternating direction line iterative method with optimum relaxation para- 
meters is also more efficient than the SQR proccd~~e. 7%~ number of iteraiicxs fcx 

ADLI is less than half of that of SC?R, though the reduction m time is no1 of tk 
same order due to increase in the operational counts, 

.4nother comparison of interest is the convergence rate of these methods wit!: 
various convergence criteria. Figure 6 shows the number of iterations reqtiked for 

FIG. 6. 

0 ?OO 300 
NUMBER OF ITERATIONS 

Comparison of convergence rate of different methods+xergy 

different convergence criteria. The S0R method starts oscihatmg (showa as ci51tkI 

hne in the figure) around 1 x lO-5 and the error never reduces below 0.5 x :W, 
For the ADI., method the oscillations start at 4.2 x lO-5 and the mmmmm error 
observed is 7 X 10-6. But in the case of !&ken’s extrapolation, s&e we are 
extrapolating every time to mmimize the error, it converges contmuousl~ to the 
mmimum of lO-7 (which is about the minimum we can attam witlho~ut r~~mdoE 
noise in single precision arithmetic on the computer used in t’his work). ‘The comW 
parison of convergence rates is not presented for Navier-Stokes eqnations because 
oF large changes in the maximum error in the functional values in the innial 
iterates. At this stage of iteration the error is also oscillatory in nature. -4fter the 
system starts attaining convergent behavior3 the maximum error m the vor:icity 
function never reduces below 0.5 x lO-3 for -4DLI and 0.1 x lW3 for the SCIR 
method* This is an obvions consequence of the coupled nature of the equati.ons 
being solved= 
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