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We explore here the acceleration of convergence of iterative methods for the solution
of a class of quasilinear and linear algebraic equations. The specific systems are the
finite difference form of the Navier-Stokes equations and the energy equation for
recirculating flows. The acceleration procedures considered are: the successive over
relaxation scheme; several implicit methods; and a second-order procedure. A new
implicit method—the alternating direction lire iterative method—is proposed in this
paper. The method combines the advantages of the line successive over relaxation anc
alternating direction implicit methods. The various methods are tested for their com-
putational economy and accuracy on a typical recirculating flow situation.

The numerical experiments show that the alternating direction line {terative method
is the most economical method of solving the Navier-Stokes equations for ali Reynolds
numbers in the laminar regime. The usual ADI method is shown to te not so attractive
for large Reynolds numbers because of the loss of diagonal dominance. This loss can
however be restored by a suitable choice of the relaxation parameter, but at the cost
of accuracy. The accuracy of the new procedure is comparable to thar of the well-
tested successive overrelaxation method and to the available results in the literature.

The second-order procedure turns cut to be the most efficient method for the solution
of the linear energy equation.

INTRODUCTION

Numerical solutions to the Naiver—Stokes and energy equations are very popular
for predicting the flow and heat transfer in separated regions. The development of
these solutions involves the construction of a suitable finite difference analogue
that exhibits satisfactory convergence and stability properties. The “upwind”
difference scheme has now been accepted as an efficient procedure for constructing
solutions to recirculating flow problems [1-4]. The second step in the process, the
solution of the algebraic equations generated by the differencing procedure, is
usually accomplished by some form of relaxation method. One of the severs
handicaps in the application of these methods for the study of complex enginesring
systems with a large number of parameters, is the enormous demands of computa-
tional effort. In this paper, we concentrate on this aspect of the problem and seek
methods that will provide fast and accurate solutions to the algebraic equatious.
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The finite-differencing procedure of elliptic partial differential equations (the
equations we consider in this paper belong to this general class) yields a large,
sparse matrix system. These systems are usually solved by iterative methods. Many
acceleration procedures are in vogue to reduce the computational effort involved
in these procedures. For linear equations, a considerable body of theoretical
results has been developed to predict the behavior of the different procedures [5].
No such results are available for the quasilinear coupled system of equations that
are of interest in this work. Under these conditions, it appears expedient to take
recourse to an experimental study of the behavior of various methods. The primary
objective of the present work is to apply various acceleration procedures to a
typical recirculating flow situation and arrive at ad hoc conclusions about the
relative effectiveness of the different procedures, in handling this class of problems.
The energy equation, though single and linear, faces similar problems of slow
convergence in separated regions. Hence, the acceleration procedures for this
equation have also been studied.

The cavity problem has been chosen as the model problem for detailed study
in this work. Plenty of experimental as well as computational results are available
for this geometry and as such will provide adequate comparisons for the work
reported in this paper.

Tue CAvVITY PROBLEM

The problem of steady, plane, laminar flow of an incompressible constant
property Newtonian fluid in a square cavity, similar to the one considered by
Greenspan [2], is considered in this paper. The flow inside the cavity is induced by
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the steady motion of one of the walls in its own plane, while the other three are
stationary. The moving wall is kept ai a temperature higher than that of the cther
three walls which are at a uniform temperature. Figure 1 shows the geometry and

coordinate system employed in the study.
The equations governing the flow inside the square cavity are:

V2 = —q,
T = Rel(o3/ayNee/ex) — (Gex)(@wlen)].

The boundary conditions to be satisfied are:
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The energy equation for steady, viscous, constant property fluid is

1
Re Py

u(oT/ox) + v(eT[ey) =

The boundary conditions are:

T(x, 1) ==1,
T(0,y) = T(x,0) = T{1, ) = 0.
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In the above equations, i, w, and 7 are the dimensionless stream, vorticity and
temperature functions respectively; Re is the Reynolds number; Pr is the Prandtl

aumber of the fluid; v and v are the velocity components in x and y directions.

Tue FINITE DIFFERENCE EQUATIONS

The governing differential equations are repiaced by difference equations using
the upwind differencing procedure [2]. These equations for any point (7, ) in the

field corresponding to Egs. (1), (2) and (4) are:
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h in the above equations is the size of the square mesh used to replace the flow
field.

The next step is to replace the boundary conditions by their corresponding
difference forms. The stream function presents no problem and the first set of
conditions shown in Eq. (3) can be used directly. The boundary condition for
vorticity or its derivative along the walls is not specified a priori, but is to be
derived from the no-slip condition at the wall [2], that is, from the second set of
conditions in Eq. (3). Thus, for example, on the wall x = 0,

=V |op = (0, y)

4 2 1 1 20
:h_2¢0—7zg¢1_'h§¢3—h‘2¢4+zaj€ o )]
and
of |1
Px o, z—h(‘—-”‘/’o + Ay — ). (10

The subscripts on i refer to the points shown in Fig. 1. Similar equations for the
other walls may be written. The temperature boundary condition can be used
directly from Eq. (5).

THE NUMERICAL PROCEDURE

The numerical method employed to solve the set of equations represented by (6)
and (7) is an iterative one. Since the boundary condition on the vorticity function
is specified in terms of unknown stream function values which are away from the
boundary, special iterative procedures are required. Greenspan [2] uses an iterative
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procedure consisting of an inner and an outer iteration. This procedure is illustrated
with the aid of the thick line drawn at a distance of 4 from the boundary fsee
Fig. 1). The outer iteration consists of evaluating:

a. The vorticity function on all the walls from equations of the type (9);
b. the stream function on the thick line from equations of the type {10).

The inner iteration involves the evaluation of:

a. the vorticity function at all points inside the boundary from Eq. (7);

b. the stream function at all points inside the region bounded by the thick lire,
using Eq. (6).

For each outer iteration, Greenspan carries out the inner iteration to convergence.
Instead a direct iteration procedure involving one inner iteration to every outer
iteration reduces considerably the computational time according to Friedman [6].
We use the direct iteration procedure in ali our investigations. The converzence
criterion is defined in this work by

f(n+1> _f(:z) | )
T e !

max

pms
S

where f refers to the function evaluated, n the iteration count, and e an arbitrary
small number.

ACCELERATION PROCEDURES

Direct iterative procedures of the Gauss—Seidel type are normally slow in
convergence. Many acceleration techniques have been devised from time te
time to improve the rate of convergence of iterative methods. A few of them are
discussed below.

Successive over Relaxation Method (SOR)

This is a point-by-point iterative scheme, similar to the Gauss-Seidel scheme, but
with a relaxation factor “r” to find the new value at a point in the field. The proce-
dure for the evaluation of a function “f” iteratively is defined by

f‘“(n-(—l) :f(n) + ,.(f(n+1) -f(")). {E'_“,j

e

Fio+Uin the above, is the value found explicitly from known values at the neigh-
boring points at the (= - 1)th iteration and 1 is the updated velue. The rate of
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convergence of the procedure is a strong function of “r” and for linear equations,
an optimum value of “¢”, which provides convergence rates that are faster by an
order of magnitude than the Gauss—Seidel scheme (r = 1.0), is shown to exist.
Further, simple linear equations are amenable to exact analytical treatment to
derive the optimum relaxation parameters [5]. No such results are available to
determine the optimum relaxation parameter for the type of equations considered
in this paper. Thus, one is forced to rely upon a scanning procedure, that is, to vary
r over a range, and select that value of r which provides the fewest number of
iterations. The procedure is carried out for the present set of equations with
Re = 1000, Pr = 1.0, 2 = 0.05 and « = 0.0001.

The scanning is accomplished in two stages. At first the relaxation parameter
for vorticity is kept constant at a value of unity and only the value of  for stream
function is varied. The result of this investigation is shown in Fig. 2 as a plot of
convergence rate versus the relaxation parameter. From this figure, it is seen that
the optimum relaxation parameter is 1.6. For r, > 1.6, the number of iterations
required for convergence tends to increase, and around r, = 1.9, the method
diverges.
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Fia. 2. Convergence rate-stream function.

Next, the relaxation parameter for stream function is kept constant at 1.6 and it
is varied for the vorticity function. The result of this investigation is plotted in
Fig. 3. The optimum relaxation parameter for vorticity is obtained as 1.1 from the
figure. The procedure diverges for r, = 1.2

In order to check whether the above values of the relaxation parameters are the
only ones that produce fastest convergence, the computer programmes were run for
several other combinations of r, and r,, . These runs showed poorer convergence
rates than those obtained with the optimum values for r, and r, . These values of
optimum relaxation parameters are insensitive to initial guesses used to start the
iteration. Dynamic variation of the relaxation parameters during the iteration
process is also of no help for the present system of equations. Finally, these relaxa-
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tion parameters have been tested for a wide variety of geometries and protiems
[7-9] by the authors and found to work very well.

The savings in computational effort obtained by the use of these optimum
relaxation parameters are considerable as the following results will reveal. While
the Gauss—Seidel method (r, = r, = 1.0) takes 366 iterations for convergence, the
SOR method with optimum relaxation parameters {r, = 1.6, r, = 1.1) takes only
115 iterations. In both cases the number of operations performed per iteration is
almost the same. Thus, by the use of the SOR method with optimum relaxation
parameters, the time taken for convergence is reduced to about one-third of the
value with the Gauss—Seidel scheme.

A similar procedure is employed to establish the optimum relaxation parameter
for the energy equation. Figure 4 shows the plot of rate of convergence against the
relaxation parameter for the energy equation, The optimum relaxation parameter
for this case is obtained as 1.1, and is the same as that of the vorticity function. The
above result suggests that the optimum relaxation parameter is governed by the
form of the equation rather than the linearity or otherwise of the equation, at least
for the class of flows studied here. The reduction of time achieved by the use of the
optimum relaxation parameter with the SOR method is only 17 % when compared
with the time taken by the Gauss—Seidel scheme.
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Implicit Methods

The cavity problem represents the simplest geometry in the class of steady,
viscous, separated flows. Complex geometry usually results in a large system of
algebraic equations. The increased size of the system usually results in an increase
not only in the computational time per iteration but also in the number of iterations.
It is natural in these circuomstances to seek methods of further improving the rate
of convergence of iterative methods. Some of these methods are implicit in nature.

In SOR method, the value of each component is found explicitly in terms of the
values at the neighboring points. If it is applied to a group of points instead, there
will arise a system of equations which require simultaneous solution. Consequently
individual components are implicitly defined in terms of the other components of
the group.

In the implicit methods, the updated value at each point is found as follows.

f(n+1) :f(‘l’l) - ,.(f_(n+1) _f(n)) (13)

where f®+1 refers to the new value of the function evaluated implicitly at the
(n + 1)th iteration and f+Y to the updated value. The relaxation parameter is
the optimum value determined earlier. These methods are treated in detail by
Ames [10]. We restrict ourselves here to a brief discussion, followed by the relevant
equations, for the different methods. The energy equation, being similar to that of
vorticity, is not included in the following.

Line Iterative Methods

Only row and column iteration are considered in this paper. The corresponding
difference equations are:

Row Iteration:
P = (0, 4 T 4 D LD el a, (14)
a5 = [offhy + ol + ofi + ofd
Reh n "
+ S {ofh 0+ [v) — o — o)
(n+1) (n+1)
— 5B — L)+ oW+ w3/
4+ Reh(lu| + | v]). (15)

Iteration is carried out from the top of the cavity to the lower wall.
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Column Iteration:

P = S + 90N+ i+ Y+ el
a5 = [l + o) + offu + ofid
1+ B+ o) — ot — o)
— ol — | u D) + o+ T/
(4+ Reh(u| + 1),

The iterations are carried out from the left to the right of the cavity.

Alternating Direction Implicit Method (ADI)

437

(7

This method is somewhat similar to the line ‘terative mesthod carried out alier-

nately in x and y directions, The iterations in the x-direction are carried o

treating the x-direction derivatives as unknowns, while the y-direction iterations
treat the y-direction derivatives as unknowns [10]. The difference equations cor-

responding to these two cases are:

Y-Direction Iteration:
J(n+1/’) zﬁ‘”’+r(¢rfiﬂ’*’ | 7}[}57!-1—1/2) ab(n—rl"’)\
(0 P — 200+ e,
w1 = off +r [0 + offy? — 2l
Rel o (ni1pm) : (12 (n+12)
——{od e+ o) — el e — oD — 2075
+r [wz{',nj)——l I w(ny+ _2‘1)5711)

+ Rzefz fo - 1) — o Gt — 1) — 200

X-Direction Iteration:

(1) (er1/2) (nt1/2) (n1r2)
P = s Y Y — 2y

]1 (n+1/7) +},(¢('n+1)

{r-+1) ( L+1)
i,5—1 - 2 llf " \7
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W) — (n+1/2)_[_i[ (v s 2w§;",~+1/2)
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Alternating Direction Line Iterative Method (ADLI)

We propose in this paper a variation of the conventional ADI procedure. It
consists of employing the line iterative method described above, but alternately
in the x and y directions. Thus a complete iteration comprises one iteration in the
row-direction, followed by a second one in the column direction. The equations for
the method are the same as Egs. (14-17). We call the method “the Alternating
Direction Line Iterative (ADLI)” method.

Second-Order Procedure

When an iteration procedure converges linearly, it is sometimes possible to
accelerate the convergence by using a second order procedure, such as Aitken’s
extrapolation technique [10]. In this method the value of the function is obtained
by extrapolation from three successive iterates to minimize the error. The following
is the equation for the method,

(n+2) __ F(n+1)2
f: f(n+2) - (f(7z(+f2) — 2f(1{:-1) +)f("’) . (22)

The method is to be used along with some other scheme such as SOR and is
effective when applied after a few initial iterates have commenced the process of
convergence.

RESULTS AND DISCUSSION

Employing each of the methods described in the previous section, the equations
of motion are integrated for the cavity problem. The acceleration procedures are
tested against the well established SOR method. The methods are also studied for
their utility in solving the energy equation. The comparisons are based on the
number of iterations, time required for a specified convergence, and “operational
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counts” per iteration. The “operational counts” are calculated taking into account
the number of multiplications and divisions per iteration. The computational times
reported in this paper refer to times taken on an IBM 360/44 system with an on-line
input—output facility. Single precision arithmetic is found to be adequate for all the
computations in this investigation.

A second comparison is presented to establish the accuracy of the resulis
obtained in this investigation. Theoretical error estimates are difficult to obtain
for the class of coupled, quasilinear equations considered here. Hence, we compare
our results with the ones available in the literature.

The results of these studies are discussed in this section.

Navier—Stokes Equations

We first consider the effect of the convergence criterion, e, on the accuracy of

the sofution. It may be recalled that the convergence criterion defined in this work
is a relative maximum one. It is the maximum, in the field, of the ratio of change in
the values of the function between two successive iterates to the value of the func-
tion (see Eq. (11)). Thus this criterion is satisfied by stream and vorticity funciions
at all points in the field. In general, when the vorticity function satisfies the con-
vergence criterion, the stream function converges to an e far smaller than the one
specified.

TABLE I

Effect of Convergence Criterion on the Accuracy of the Solution #=Velocity
for Re = 1000, = 0.05

X =02 X =05 X =08
Convergence Criterion Convergence Criterion Convergence Critericn
0.005 0.001 0.005 0.001 0.005 £.001
1.0 —1.0 —1.0 —1.0 —10 —1.0 —10
0497 —0 49216 —0SMN. 0.51275 __0.3261" _f324
P —— 0 28 i
i = § - ar
0.75 —0.07977 -—0.07978 —0.16328 -—0.16334 —0.03847 —{3.03852
0.65 —0.04425 —0.04427 —0.09336 —0.09340 —0.02858 —0.02861
0.55 —0.01019 —0.01022 —0.01764 —0.01766 +0.00467 4-(.00468
045 -+0.03037 +0.03035 +0.05727 +-0.05729 +9.05007 +0.05010
0.35 +0.09824 -+0.09824 +0.14269 +0.14271 -0.09623 +0.09628
0.25 +0.20051 -+0.20052 +0.25323 +0.25327 +0.12417 +0.12421
0.15 +-0.26724 +0.26729 +0.33845 +0.33842 +0.10326 +0.10333
0.05 -+0.16553 ~+0.16550 +0.21385 1021389 +0.03061 +-G.33061

] 0 \] 0 0 9 G
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The choice of ¢ is governed by the accuracy desired for the physically observable
variables and the computational effort. Table I shows the values of the velocity
function at three sections in the cavity for two values of ¢, namely, 0.005 and 0.001.
These results have been obtained by SOR method for a Reynolds number of 1000
and a mesh size of 0.05. An examination of the table reveals that the maximum
difference between the two sets of values occurs at x = 0.2 and y = 0.55, and is less
than 0.3 9. The rest of the field shows differences only in the fourth or fifth signifi-
cant figure. Thus, for this class of problems, an € = 0.005 produces results which
are of sufficient accuracy for all practical purposes. This choice of € results in
significant savings in computational effort for complex geometries such as in
[71-19], though the savings are not of much consequence for the present geometry.

We now turn to the comparison of various methods for solving the algebraic
equations corresponding to the Navier-Stokes equations. These results are sum-
marized in Table II. They have been computed for a Reynolds number of 1000 and
a mesh size of 0.05. The Thomas algorithm [10] for a tridiagonal matrix is used for
solving the subsystems in all the implicit methods. The methods have been arranged
in the order of their convergence rates.

TABLE II

Comparison of Iterative Methods—Navier-Stokes Equations
Re = 1000, » = 0.05

LINE SOR
ADI SOR ADLI
_ ry = 1.6 r, = 1.1 Aitken’s
rg = 1.6 Gauss-  ADLI rg = 1.6 ry = 1.6 extrapo-
Method 1, = 0.1  Seidel (G-S) Column Row r,=1.1 r,= 11 lation

Number of 80 268 132 123 85 83 28 —
Iterations
Time 107 96 80 77 54 37 34 —
(sec.)

Operational 9020 4200 7420 7820 7820 4600 7820 —_
counts

The table does not include any results for the second order procedure—the
Aitken’s extrapolation procedure. The procedure failed to converge for all com-
binations of (under or over) relaxation parameters. The failure is attributed to the
coupled nature of the governing equations. Extrapolation of one function—say,
the stream function—to minimize the error, results in an increased error in the
other function. Use of the procedure on one function only (in particular the stream
function) does not assure the convergence of the system either.
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Before discussing the results in Table 11, we will digress a little and discuss some
interesting features observed during the present work while using the alternating
direction implicit (ADI) method. The method is yet to be investigated throughly
gven for linear systems. It is known to result in loss of accuracy when applied to
certain systems [10]. For the present system of equations, the ADI method with
optimum relaxation parameters (r, = 1.6, r, = 1.1} converges only for small
Reynolds numbers (say 100). As the Reynolds number is increased to 1000 the
method fails to converge. This is attributed to the Ioss of diagonal dominance
the coefficient matrix as shown below. In the tridiagonal matrix for the cclumn
tteration, the coefficients have the form

—ft (el —v)YReh/2] 2+ v Reh + 1] —[1 4o+ ) Rehf2].

Since the off-diagonal terms involve addition of velocity components, the diagonal
term loses dominance whenever the Reynolds number becomes large. However,
this loss can be compensated by making the relaxation factor, », small enough. A
similar situation prevails for row iteration as well. The following discussion will
reveal some of the undesirable consequences of the above factors.

The solution obtained by the ADI method with optimum relaxation parameters
agrees well with that of the SOR method for a Reynolds number of 100, as can be
observed from Table II1. The table shows center line u-velocities cbtained by the

TABLE 1iI
Comparison of ADI and SOR Methods Center Line u-Velocity for Re = 100, 2 = 0.05

Method SOR ADI

rg = 1.6 rg = 1.6
Y Fe = 1.1 [

1.0 —1.0 —1.0
0.95 —0.66219 —{(.66218
0.85 —0.22962 —0.22960
0.75 —0.02967 —0.0964C
0.65 +0.09442 +0.09444
0.55 +0.17075 +0.17074
0.45 +0.19677 +0.19674
0.35 -+0.18140 +0.18137
0.25 +-0.14345 +0.14344
0.15 +0.09633 +0.09633
0.05 4-0.03805 +0.,638035

0 0.0 0.0
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TABLE 1V

Effect of the Value of Relaxation Parameter on The Accuracy of the ADI Method.
Center Line n-Velocity for Re = 1000, A = 0.05

Method SOR ADI

Fg = 1.6 ry = 1.6 rg = 1.6
Y re = 1.1 ro = 0.5 rep = 0.1

1.0 —1.0 —1.0 —1.0
0.95 —0.51223 —0.51234 —0.51203
0.85 —0.21888 —0.21904 —0.21848
0.75 —0.16328 —0.16334 —0.16287
0.65 —0.09336 —0.09334 —0.09306
0.55 —0.01764 —0.01756 —0.01753
0.45 +0.05727 +0.05736 +0.05718
0.35 +-0.14269 +0.14278 +0.14248
0.25 -+0.25323 +0.25330 +0.25294
0.15 +0.33845 +0.33836 -+0.33790
0.05 +0.21385 +0.21381 +0.21347

0 0 0 0

Number of 83 115 80

iterations

two methods. An agreement upto 4 significant figures is obtained. Table IV shows
centre-line u-velocities for a Reynolds number of 1000 and two values of ,, 0.5
and 0.1, with the ADI procedure. The solution obtained by SOR with optimum
relaxation parameters is also included for comparison. It is seen that the ADI
method, in general, agrees with the SOR result to only three significant figures. For
r,, = 0.1, the convergence is faster than that for r, = 0.5. However, the agreement
with the SOR result is poorer for r,, = 0.1, when compared with the result obtained
with r,, = 0.5. Thus the solution obtained by the ADI method seems to depend on
the relaxation parameter (which is to be reduced in order to obtain convergence at
higher Reynolds numbers). This makes the method unreliable.

Reverting to Table II, we will now consider the difference in convergence rates
between the SOR and the line SOR methods. The line iterative methods are known
to accelerate the convergence of linear equations [10]. However, for the problem
under consideration, both row and column iterations do not give convergence
rates better than SOR. Since the operational counts per iteration are much larger
than the SOR, these methods involve large computational times. An interesting
by-product of the study is the difference between the convergence rates of the
column and row iterations. This arises because the maximum variation of stream
and vorticity functions occurs along the column ( y) direction. During a single
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tmd

column iteration, the implicit solution adjusts the values only along one column
while the others are assumed known. This is ineffective due to the neglect of large
variations near the moving wall, in the adjacent colummns. In the case of row
iteration, since the iteration is carried out in the direction of maximum variztion
of the functions, it converges faster than column iteration.

The new method proposed in this paper, the alternating direction line iterative
{ADLI) method, is tested for two sets of relaxation parameters, namely, one cor-
responding to the Gauss-Seidel scheme (r, = r, = 1.0) and the other
cerresponding to optimum relaxation parameters (v, = 1.6, r,, = 1.1}. The former
reduces the number of iterations required for convergence to nearly half compared
to that of the Gauss-Seidel method. The reduction in time s only 16%] due 10
increase in operational counts. The latter procedure takes the fewest iteration
for convergence of all the methods investigated in the present work, The nummber
of iterations (= 28) reported in Table II implies 28 row iterations and 28 columu
iterations. The operational counts for the ADLI method is nearly double that of
SOR. However, the time required for convergence is less than that of SOR. Thus
the alternating direction line iterative method with optimum relaxation parameters
turns out o be the most economical method of solving the finite difference equations
of motion, both in the number of iterations and computer time.

In view of the above result, it was decided to investigate the meihod in greater
detail. The program was run for different Reynolds numbers and mesh sizes and
its performance was compared with that of SOR for the same parameter values.
Table V shows the convergence rates and the time taken for the two methods with

TABLE V
Comparison of ADLI and SOR Methods—Computational Effort, Different Mesh Sizes, Re = 1000

Mesh size 1/10 1/20 1,30 1/40 1,50
£ SOR S N 11 I b SR . M
Time (sec} SOR 17 37 223 606 1551
ADLI i7 34 183 567 1222
Percentage saving in 0 8.1 18.7 —10.1 3.2
computer Time with
ADLI

fve different mesh sizes (0.1, 0.05, 0.033, 0.025 and 0.02), for 2 Reynolds number
of 1000. The same relaxation parameters (r, = 1.1, r, = 1.6} were used for all
mesh sizes. As the mesh size is reduced, the savings in computer time increase with
the use of the ADLI procedure, the maximum saving occurring at # = 0.02, For

58z[15/4~2
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the mesh size s = 0.025, the ADLI method exhibits a poorer convergence rate than
the SOR procedure and this is difficult to explain on the basis of the present work.
The solutions for different Reynolds numbers (10, 50, 100, 500, 1000, 2000 and
5000) are obtained with a mesh size of 0.05. The number of iterations, the time
required for convergence and percentage savings in time when compared with that
of SOR are tabulated in Table VI. The ADLI method results in substantial savings

TABLE VI
Comparison of ADLI and SOR Methods—Computational Effort, Different Reynolds Numbers,
h = 0.05
Reynolds
number 10 50 100 500 1000 2000 5000
Number of  SOR 109 105 142 132 83 565 —
iterations ADLI 33 32 42 38 28 35 58
Time SOR 49 47 63 59 37 265 —
(sec) ADLI 40 38 51 46 34 43 75
Percentage saving 18.3 19.1 19.0 220 8.1 83.8 —
in computer Time
with ADLI

in computational time for the range of Reynolds numbers investigated. The saving
is dramatic for higher Reynolds numbers: for Re = 2000 it takes less than one-
sixth the time taken by SOR procedure; for Re = 5000, while the SOR fails to
converge, the ADLI not only converges, but does so in a fairly short time. The
behavior of SOR at high Reynolds numbers is attributed to severe oscillations that
are encountered during computation. These results are somewhat different from
those of Greenspan [2] who obtained solutions upto a Reynolds number of 105,
The Greenspan work uses a modified form of SOR and involves a large number of
parameters with attendant programming complexities. In addition, the boundary
conditions are handled in a different way as explained earlier. The computational
times are also very large. The ADLI method developed in the present work has not
been tested beyond a Reynolds number of 5000 since laminar flows under such
conditions are not physically realizable. In support of this, the experimental
results of Pan and Acrivos [11] can be cited. According to their findings, the limit
Re — oo is attained at a value of Re = 2700 for a square cavity and further, flow
instabilities set in at about Re == 4000 for cavities of large depths. Thus in the
range of Reynolds numbers of practical consequence, the most efficient method
of integrating the equations of motion for recirculating flows, is the “upwind”
difference scheme coupled with a direct iteration technique and the ADLI proce-



ELLIPTIC EQUATIONS 445

dure. The ADLI method is successful because it combines the virtues of all the
methods considered in this investigation with the exception of the second order
procedure.

TABLE VII

Comparison of ADLI and SOR Methods—Accuracy
u-Velocity for Re = 1000, £ = 0.05

X =02 X =053 A =08

Y SOR ADLI SOR ADLI SOR ADLY
1.0 —1.0 —1.0 —1.0 —1.0 —1.0 —1.8
0.9 —0.49215 —0.49212 —0.51223 —0.51228 —0.32612 —{.32615
0.85 —0.13550 —0.13548 —0.21888 —0.218% —0.02594 —0.02602
0.75 ~0.07977 —0.07975 —0.16328 —0.16328 —0.03847 —0.03854
0.65 —0.04425 —0.04425 —0.09336 —0.09330 —0.02858 —0.0285%
0.55 —0.01019 —0.01021 —0.01764 —0.01757 +0.00467 +3.60473
0.45 +0.03037 -+0.03036 +0.05727 +0.05732 +0.05007 +3.05016
8.35 4-0.09824 --0.09824 +0.14269 +0.14271 +0.05623 +0.05629
.25 +0.20051 +0.19951 +0.25323 +0.25324 +0.12417 +0,12421
0.15 +0.26724 4-0.26723 +4-0.33845 +0.33833 +0.1033¢6 +0.10338
0.05 +0.16653 +0.16647 +0.21385 +0.21380 --0.03061 4003061

Y 0 6 0 0 0 G

We next examine the ADLI method for its accaracy. Table VII shows the
u-velocity components at three sections (x = 0.2, 0.3 and 0.8) of the cavity obtained
by SOR and ADLI methods for Re == 1000 and /1 = 0.05. The two sets of resuits
agree with each other to four significant figures.
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Fic. 5. Comparison of center line u-velocity. Reynoids number = 100, (——) & = /50
{Burggraf); (~—) h = 1/14 (Mills); e 2 = 1/20 (Present}.
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Finally the solution obtained in this paper is compared with those available in
the literature. No numerical comparisons are attempted since such data are not
easily accessible to the authors. Graphical comparisons of centre line velocities for
a Reynolds number of 100 obtained in the present investigation with those obtained
by Mills [12] and Burggraf [13] are presented in Fig. 5. Both these investigators
employ the central difference scheme. Mills uses the Liebmann iteration technique
while Burggraf uses a modified relaxation procedure. The present solution obtained
with a mesh size of 1/20 agrees very well with that of Burggraf, obtained with
A = 1/50. The differences in the solutions between Mills and the present one are
due to the coarse mesh (2 = 1/14) used by Mills.

Energy Equation

The most successful procedure for solving the finite difference equations of
motion i shown to be the ADLI method. This, along with the SOR procedure is
considered, in this section, for the solution of the energy equation in finite difference
form. The latter is included for purposes of comparison. The Aitken’s extrapola-
tion technique, which is known to yield very fast convergence for linear equations,
is also studied. The relevant equations are similar to those of vorticity except for
the additional parameter, Prandtl number. The results of these investigations are
shown in Table VIII. The Prandtl number is unity, the Reynolds number is taken

TABLE VIIL

Comparison of Iterative Methods—Energy Equation
Re = 1000, Pr = 1.0, 1 = 0.05.

SOR ADLI Aitken’s extrapolation
Method o= 1.1 rr= 1.1 rr=1.1
Number of 122 54 38
iterations
Time 26 18 13
(sec)

as 1000, the mesh size used is 1/20, and € = 0.001. The convergence criterion is
chosen as 0.001 to maintain more or less the same accuracy as that of the stream
function.

From the table, it is seen that the Aitken’s extrapolation technique is the most
efficient method for the solution of the energy equation, though it fails with the
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Naiver—-Stokes equations. This success must be attributed to the fact that we are
solving a single linear equation in this case. The number of iterations required for
convergence is less than one third of that of SOR, while the time is half of thaz of
SOR.

The alternating direction line iterative method with optimum relaxation para-
raeters is also more efficient than the SOR procecure. The number of iterations
ADLI is less than half of that of SOR, though the reduction in time is not of
same order due to increase in the operational counts.

Aunother comparison of interest is the convergence rate of these methods with
various convergence criteria. Figure 6 shows the number of iterations requirad for

10 1 : -
o 100 200 300 400
NUMBER OF ITERATIONS

Fic. 6. Comparison of convergence rate of different methods—energy esquation,

different convergence criteria. The SOR method starts oscillating (showa as dotied
iine in the figure) around 1 X 10-% and the error never reduces below 0.5 < {5,
For the ADLI method the oscillations start at 4.2 X 107% and the minimuom errcr
observed is 7 x 10-% Bat in the case of Aitken’s extrapsiation, since we are
extrapolating every time to minimize the error, it converges continucusly to the
minimum of 10-7 (which is abouti the minimuom we can attain without roundoi
noise in single precision arithmetic on the computer used in this work). The com-
parison of convergence rates is not presented for Navier—Stokes equations becauss
of large changes in the maximum error in the functional values in the initial
iterates. At this stage of iteration the error is also osciilatory in nature. After the
system starts attaining convergent behavior, the maximum error in the voriicity
function never reduces below 0.5 x 1073 for ADLI and 0.1 x 1073 for the SOR
method. This is an obvious consequence of the coupled nature of the equations
being solved.
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